DISTRIBUTION OF THE HEAT AND MASS TRANSFER PARAMETERS WITH A REACTION FRONT WITHIN A LAMINAR BOUNDARY LAYER

A. V. Lykov and G. T. Sergeev

The distribution of Prandtl numbers, Schmidt numbers, Lewis numbers, temperature, enthalpy, concentration, shearing stresses, diffusion currents, and thermal fluxes across the height of a boundary layer within which there exists a reaction front is established and analyzed.

An analytical study is made here of heat and mass transfer in a reacting boundary layer at a porous graphite plate, with injection of a reactant (hydrogen) taken into account. In an earlier study [1] the injected gas was assumed to react with the solid material at the plate surface, as would be the case at a low injection rate, but in this study we will be concerned with both external and internal heat and mass transfer when the injected gas may filter through the porous graphite plate into the laminar boundary layer of a multicomponent gas at a higher rate. The problem has already been formulated in [2]. The analysis here will be based on the assumption that the homogeneous reaction between the injected gas (hydrogen) and the oxygen from the outer stream

$$H_2 + \frac{1}{2}O_2 = H_2O$$
 (a)

occurs within an infinitesimally thin zone $y = y_*$ which happens to be the separation surface; that the heterogeneous reaction between the generated water vapor and the carbon of the plate

$$H_2O + C = CO + H_2$$
 (b)

and the homogeneous reaction between the generated carbon monoxide and the oxygen

$$CO + \frac{1}{2}O_2 = CO_2,$$
 (c)

are both infinitely faster, as is reaction (a), than the diffusion process and that they occur at the plate surface and within zone $y = y_*$ respectively; that the rate V at which the plate surface shifts as a result of reaction (b) is a function of the x-coordinate only and does not vary with time:

$$V = \frac{\rho_{\infty}}{2\rho_{\Sigma_{\sigma}}} \left(\frac{\nu_{\infty}u_{\infty}}{x}\right)^{1/2} A, \quad A < 0$$

while the transverse flow of gases at the plate surface is determined according to the relation

$$(\rho v)\overline{tg} = \frac{\rho_{\infty}}{2} \left(\frac{v_{\infty}u_{\infty}}{x}\right)^{1/2} B,$$

where A and B are dimensionless constants. All other assumptions have already been stated in [2].

According to the stipulated process pattern, this system contains the gases O_2 , CO, H_2O , N_2H_2 , and CO_2 , which will be denoted by the subscripts 1, 2, 3, 4, 5, 6 respectively: components 2, 3, 4, 5, 6 in the region $0 \le y \le y_*$ (zone I) between the plate surface and the reaction front, components 1, 3, 4, 6 in the region $y > y_*$ (zone II), inside the porous graphite plate components 2, 4, 5, 6.

The system of equations for a laminar layer of a compressible gas, with internal and external heat

Institute of Heat and Mass Transfer, Academy of Sciences of the BSSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 5, pp. 807-819, May, 1974. Original article submitted April 26, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

UDC 532.517:536.46

and mass transfer taken into account [2] (here and henceforth a prime sign denotes the derivative with respect to $\tilde{u} = u/u_{\infty}$):

$$2\omega\omega'' + \tilde{\rho}\mu\tilde{u} = 0, \ (\omega\bar{j}_i)' + \omega'Y_i = 0, \ i_{\rm I} = 2, 3, 4, 5, 6, \ i_{\rm II} = 1, 2, 3, 6, \left[\omega\left[-\frac{H'}{\rm Pr} - \left(1 - \frac{1}{\rm Pr}\right)u_{\infty}^2\tilde{u} + \sum_i h_i\left(\frac{Y_i}{\rm Pr} - \bar{j}_i\right)\right]\right]' - \omega'H' = 0,$$
(1)
$$i_{\rm I} = 2, 3, 4, 5, 6, \ i_{\rm II} = 1, 3, 4, 6,$$

with the following boundary conditions:

$$\begin{split} \omega(1) &= 0; \ Y_{1}(1) = Y_{1x} \ ; \ Y_{3}(1) = Y_{6}(1) = 0; \ H(1) = H_{\infty} \quad \text{at} \quad \tilde{u} = 1; \\ Y_{i}(\tilde{u}_{*}) &= Y_{i*}, \ i = 3, \ 6; \ Y_{1}(\tilde{u}_{*}) = Y_{5}(\tilde{u}_{*}) = Y_{2}(\tilde{u}_{*}) = 0; \\ \overline{j}_{5}^{\mathrm{I}} &= r_{\mathrm{IV}}(\overline{j}_{3}^{\mathrm{II}} - \overline{j}_{3}^{\mathrm{II}}), \ r_{\mathrm{II}}\overline{j}_{2}^{\mathrm{I}} = r_{\mathrm{I}}(\overline{j}_{6}^{\mathrm{I}} - \overline{j}_{6}^{\mathrm{II}}), \ \overline{j}_{1}^{\mathrm{II}} = r_{\mathrm{III}}(\overline{j}_{3}^{\mathrm{I}} - \overline{j}_{3}^{\mathrm{II}}) \\ &+ r_{\mathrm{V}}(\overline{j}_{6}^{\mathrm{I}} - \overline{j}_{6}^{\mathrm{II}}); \ H(\tilde{u}_{*}) = H_{*}; \\ (\lambda T')^{\mathrm{I}} - (\lambda T')^{\mathrm{II}} = -\mu_{*}(Q_{\mathrm{R}2}\overline{j}_{2}^{\mathrm{I}} - Q_{\mathrm{R}5}\overline{j}_{5}^{\mathrm{I}}) \ \text{at} \quad \tilde{u} = \tilde{u}_{*}; \\ \omega'(0) &= B^{*}/2; \ Y_{i}(0) = Y_{ip}, \ i = 2, \ 5, \ 6; \ Y_{3}(0) = 0; \ H(0) = H_{\mathrm{p}}; \\ r_{\mathrm{IV}}\Omega_{2} + r_{\mathrm{III}}\Omega_{3} + r_{\mathrm{V}}\Omega_{6} + \omega'(0) Y_{\mathrm{s}}s_{1} = 0; \\ r_{\mathrm{IV}}\Omega_{3} + \Omega_{5} + \omega'(0) Y_{\mathrm{s}}s_{5} = 0; \\ r_{\mathrm{I}}\Omega_{2} - r_{\mathrm{II}}\Omega_{6} + \omega'(0) Y_{\mathrm{s}}s_{5} - \overline{J}_{\mathrm{s}}/2 = 0, \ \overline{J}_{\mathrm{s}} = 2r\omega(0)\overline{j}_{3}^{+}; \\ -\overline{J}_{c}Q_{\mathrm{Rc}} = [2\omega(0)|\operatorname{Pr}(0)] \left[H' - \sum_{i} h_{i}Y_{i}\right] - AT_{e}c_{P\Sigma e}[\Delta M_{ig}(0) \\ + \Delta n_{ig}(0)], \ i = 2, \ 3, \ 4, \ 5, \ 6, \ ig = 2, \ 4, \ 5, \ 6 \ \text{at} \quad \tilde{u} = 0. \end{split}$$

Here

$$\begin{split} \Omega_{i} &= \Omega_{i} (0) = j_{i}^{+} \omega (0) + \xi P \Delta D_{\mathbf{i}} (0), \\ \bar{J}_{\mathbf{s}} &= (1-P) K_{\mathbf{s}} A, \quad Y_{\mathbf{s}} = (1-P) K_{\mathbf{s}}, \quad B^{*} = B + K_{\Sigma} A, \\ \Delta n_{i} (0) &= n_{i} (1, Y_{ie}) - n_{i} (k, Y_{ip}), \quad \Delta M i (0) = M (1, Y_{ie}) - M (k, Y_{in}) \\ s_{1} &= Y_{1} + r_{\mathrm{VI}} Y_{2} + r_{\mathrm{V}} Y_{\mathbf{6}}, \quad s_{5} = r_{\mathrm{IV}} Y_{3} + Y_{5}, \quad s_{5} = r_{\mathrm{II}} Y_{2} + r_{\mathrm{I}} Y_{\mathbf{6}}, \end{split}$$

$$Q_{RS} = h_{S} - r^{-1} h_{3} - r^{-1}_{II} h_{2} - r_{VIII} h_{5},$$
$$Q_{R2} = h_{2} - r_{VI} h_{1} - r^{-1}_{V} h_{6}, \quad Q_{R5} = h_{5} - r_{VIII} h_{1} - r^{-1}_{IV} h_{3}.$$

$$r = \overline{m}_{c}/\overline{m}_{3}; \quad r_{\text{VII}} = \overline{m}_{5}/\overline{m}_{c}; \quad r_{\text{VIII}} = \overline{m}_{1}/2\overline{m}_{5}; \quad k = T_{\Sigma p}/T_{e}$$

$$n_{i} = (\lambda_{\Sigma e}T_{e})^{-1} \sum_{i_{\Gamma}} \int \Gamma dY_{ig}; \quad M_{i} = \int F d\theta, \quad D_{i} = \int \Gamma dY_{ig};$$

$$\xi = A/2\chi\rho_{\Sigma e}; \quad K_{S} = \rho_{c}/\rho_{\Sigma}; \quad K_{\Sigma} = \rho_{\Sigma p}/\rho_{\Sigma e}; \quad \overline{j}_{i} = -Y_{i}'/Sc_{i}.$$

In order to close the system (1)-(4), it is necessary to supplement it with the equation of state

$$P = R \rho T \sum_{i} Y_{i} / \overline{m}_{i}, \ i_{I} = 2, \ 3, \ 4, \ 5 \text{ and } 6,$$

$$i_{II} = 1, \ 2, \ 3, \ 4 \text{ and } 6, \ i_{F} = 2, \ 4, \ 5 \text{ and } 6,$$
(5)

and the synthesis of binary diffusion

$$\frac{\mu}{\rho} \sum_{K=1}^{N=6} \frac{Y_K}{\overline{m}_K D_{iK}} \left(\frac{\overline{j}_i}{Y_i} - \frac{\overline{j}_K}{Y_K} \right) = \sum_{K=1}^{N=6} \frac{Y_K}{\overline{m}_K} \left(\frac{Y'_K}{Y_K} - \frac{Y'_i}{Y_i} \right), \ K \neq i, \tag{6}$$

as well as with the formulas for the thermophysical parameter ${\rm F}_i$ (i referring to the component gases) and ${\rm F}$ (referring to the gas mixture)

$$F_i = F_i(\overline{m}_i, \sigma_i, T), \quad F = F(Y_i, F_i), \tag{7}$$

where F_i or F denote the density (weight), the viscosity, the thermal conductivity, the specific heat, the thermal diffusivity, or the diffusivity (binary and overall). The respective formulas are given in [4].

[†]Other symbols have the same meaning as in [2].

Fig. 1. Variation of Pr, Sc_i, Le_i, Y_i, and $\overline{j_i}$ across the height of a boundary layer \tilde{u} : a) and b) $T_{\infty} = 1800^{\circ}$ K, $u_{\infty} = 15 \text{ m/sec}$, P = 0.2, B = 0.067; c) and d) $T = 1800^{\circ}$ K, $u_{\infty} = 15 \text{ m/sec}$, P = 0.2, B = 0.27; e) and f) $T_{\infty} = 600^{\circ}$ K, $u_{\infty} = 15 \text{ m/sec}$, P = 0.2, B = 0.067; in b) solid line refers to $Pr \neq Sc_i \neq 1$, dashed line refers to $Pr = Sc_i = \tilde{\mu}\tilde{\rho} = 1$.

The nonlinear system (1)-(7), which contains not only the sought functions but also the unknowns

A,
$$u_*$$
, H_* (or T_*), H_p (or T_p), Y_{i*} , $i = 3, 6$ and $Y_i(0)$, $i = 2, 5, 6$,

was integrated numerically by the iteration method. Approximate values were assigned to the unknown quantities first, then the momentum equation, the constant-total-concentration equation, and the constanttotal-enthalpy equation were solved successively, whereupon the coefficients F_i and F were determined. This computation cycle was repeated until resulting values of the temperature did not differ from the values obtained in the preceding cycle by more than an a priori specified number of degrees. The momentum equation was then solved in a similar manner and checked for the conditions at the reaction front. If these conditions had not been satisfied, then a new location of this front was assumed and other approximate values were stipulated for the concentration and the enthalpy. The computation cycle was then

Fig. 2. Pr, Sc_i, Le_i, Y_i, and j_i as functions of \tilde{u} , at following values of the boundary-layer parameters: a) and b) T_∞ = 1800°K, u_∞ = 15 m/sec, P = 0.2, B = 0.067; c) and d) T_∞ = 1800°K, u_∞ = 15 m/sec, B = 0.27; e) and f) T_∞ = 600°K, u_∞ = 100 m/sec, P = 0.2, B = 0.067; in b) and d) solid line refers to Pr \neq Sc_i \neq 1, dashed line refers to Pr = Sc_i = $\tilde{\mu}\tilde{\rho}$ = 1.

repeated until those conditions had become satisfied and the problem could thus be regarded as having been solved. This numerical integration was performed on a model MINSK-22 computer.

The results of this numerical calculation are shown in Figs. 1-4 and in Tables 1-2, along with data on the solution to problem (1)-(7) for $Pr = Sc_i = 1$ and $\tilde{\mu\rho} = const$. In this latter case both the enthalpy and the concentration are distributed linearly:

$$H^{\rm I} = H_{\rm p} + (H_* - H_{\rm p})\tilde{u}/\tilde{u}_*, \quad H^{\rm II} = H_* + (H_{\infty} - H_*)(\tilde{u} - \tilde{u}_*)/(1 - \tilde{u}_*),$$

$$Y^{\rm I}_i = Y_{i\rm p} + (Y_{i*} - Y_{i\rm p})\tilde{u}/\tilde{u}_*, \quad Y^{\rm II}_i = Y_{i*} + (Y_{i\infty} - Y_{i*})(\tilde{u} - \tilde{u}_*)/(1 - \tilde{u}_*),$$

$$i_{\rm I} = 2, 3, 5, 6, \quad i_{\rm II} = 1, 2, 3, 6.$$
(8)

The velocity distribution $\omega(\tilde{u})$ is found, according to [3],

$$p(\tilde{u}) = u_0^{-3/2} \omega_0(\tilde{u}u_0), \tag{9}$$

where \tilde{u}_0 are the zeroes of function ω_{γ} . The unknowns H_p, H_{*}, \tilde{u}_* , Y_{ip}, and Y_{i*} are found from condition (2), where $B^{*/2} = u_0^{-1/2} tg \gamma$ and $\gamma = \arctan \omega_{\gamma}(0)$. From the last condition in (3) and taking into account (8), we obtain the following relation for locating the reaction front \tilde{u}_* when $Pr = Sc_i = 1$ and $\mu \tilde{\rho} = \text{const:}$

Û

Fig. 3. Variation of normalized currents \overline{j}_i across the height of a boundary layer \tilde{u} , at $u_{\infty} = 15$ m/sec and B = 0.067; a) $T_{\infty} = 1800^{\circ}$ K, B = 0.067, P = 0.4; b) $T_{\infty} = 600^{\circ}$ K, B = 0.067, P = 0.2; c) $T_{\infty} = 1800^{\circ}$ K, B = 0.067, P = 0.2; in a) solid line refers to $Pr \neq Sc_i \neq 1$, dashed line refers to $Pr = Sc_i = \tilde{\mu}\tilde{\rho} = 1$.

$$(\Phi u_{\infty}^{2}/2)\tilde{u}_{*}^{2} + \tilde{u}_{*}\left[H_{p} - \sum_{i_{I}} h_{i*}Y_{ip} - H_{\infty} + h_{1*}Y_{1\infty} + h_{4*}Y_{4\infty} + Q_{R5}Y_{5p} + Q_{R2}Y_{2p}\right] + \sum_{i_{I}} h_{i*}Y_{ip} - (Q_{R5}Y_{5p} + Q_{R2}Y_{2p}) - H_{p} = 0,$$

$$i_{I} = 2, 4, 5, 6.$$
(10)

Here $H_p = \sum_{i_I} h_i Y_{ip}$; i = 2, 4, 5, 6; $\Phi = (gI)^{-1}$; g denotes the acceleration due to gravity, and I denotes the mechanical equivalent of heat.

When solving the quadratic equation (10), one must select the root \tilde{u}_* so that $0 < \tilde{u}_* < 1$. With the viscous dissipation disregarded, $(\Phi u_{\infty}^2) \rightarrow 0$ and (10) transforms into a first-order equation with respect to u_* .

Taking into account relation (9), we find the friction coefficient at the surface

$$c_f = 2\omega_{\rm p} / \sqrt{\mathrm{Re}_x} \tag{11}$$

and the thermal flux

$$q_{\mathbf{p}} = -\left[\left(\lambda \frac{\omega}{\mu}\right)_{\mathbf{p}} \frac{\rho_{\omega} u_{\omega}}{\sqrt{\mathrm{Re}_{\mathbf{x}}}}\right] T_{\mathbf{p}}';$$
(12)

for the general case; when $Pr = Sc_i = \tilde{\mu}\tilde{\rho} = 1$, then function $\omega_p = \omega(0) = u_0^{-3/2}$.

It follows from the solution to problem (1)-(7), as shown in the general form in Figs. 1-3, that the Prandtl number Pr, the Schmidt numbers Sc₁, and the Lewis numbers Le₁, as well as the normalized diffusion currents $\overline{j_1}$ change very much within the region $\tilde{u} > 0.5$, especially near the reaction zone $\tilde{u} = \tilde{u}_*$ (indicated in Figs. 1-3 by the dashed vertical straight line). The most significant changes in $\overline{j_1}$ occur within the region $\tilde{u} \rightarrow 1$, i.e., at the outer edge of the boundary layer. Where $\tilde{u} < 0.5$ the changes in Pr, Sc₁, Le₁, and $\overline{j_1}$ are negligible, while the concentrations $Y_1 = Y_1(\tilde{u})$ become almost linearly distributed within zones I and II. The absolute values of Y_1 and $\overline{j_1}$, as well as the location of the reaction front \tilde{u}_* (Figs. 1, 2), become quite different when $Pr \neq Sc_1 \neq 1$ and when $Pr = Sc_1 = 1$. This difference is most distinct in the case of $Y_1(0)$, i = 2, 5. Thus, for $Pr = Sc_1 = 1$ we have $Y_2(0) = 0.160$ and $Y_5(0) = 0.111$, while for $Pr \neq Sc_1 \neq 1$ we have $Y_2(0) = 0.210$ and $Y_5 \approx 0.074$ (Fig. 2d). The values of \tilde{u}_* differ by approximately 13%. While the Prandtl number remains almost constant across the height of the boundary layer when the injection rate is low (small B-number) (Fig. 1e, B = 0.067), it changes appreciably at high injection rates (Figs. 1c and 2c, B = 0.27). As the rate of hydrogen injection increases, moreover, the reaction front \tilde{u}_* shifts (is "displaced") toward the outer edge of the boundary reaction front ($\tilde{u}_* = 0.77$ at B = 0.067 and $\tilde{u}_* = 0.97$ at B = 0.27, Fig. 1a, c). Meanwhile, $Sc_5(0)$ decreases appreciably and so does Le₅(0) accordingly (Figs. 1a, c)

and 2a, c). The other numbers Sc_i and Lei do not change as much with a change in the injection rate (Bnumber). Pr(0) decreases somewhat with a higher B-number, because the concentration $Y_5(0)$ becomes higher and the Prandtl number for hydrogen is smaller than the respective Prandtl number for all other components of the gas mixture. Furthermore, an increase in the B-number causes an increase in Y_3 and \overline{j}_3 , because the injected gas (hydrogen H_2) is completely converted to water (H_2O) according to reaction (a) (Figs. 1b, d, 2d, and 3). An increase in concentration $Y_3(\tilde{u}_*)$ produces an increase in Y_2 and \overline{j}_2 (reaction (b)) and, consequently, also an increase in Y_6 and \overline{j}_6 (reaction (c)). Meanwhile, Y_4 and \overline{j}_4 change very little, because nitrogen (N_2) is in this case an inert gas. The concentration $Y_1(\tilde{u})$ and the normalized current $\overline{j}_1(\tilde{u})$ remain unchanged during a change in the injection rate B (Fig. 1-3), because the entire oxygen (at a given constant concentration $Y_{1\infty}$) is used up stoichiometrically according to reactions (a) and (c).

It follows from Figs. 1 and 2 that the Prandtl number varies across the height of a boundary layer, quite appreciably sometimes. Thus, at $T_{\infty} = 600^{\circ}$ K, B = 0.067, P = 0.2, and $u_{\infty} = 15$ m/sec (fifth variant) we have Pr = 0.525, 0.718, and 0.683 respectively when $\tilde{u} = 0$, $\tilde{u} = \tilde{u}_{*} = 0.64$, and $\tilde{u} = 1$; at $T_{\infty} = 1800^{\circ}$ K, B = 0.27, P = 0.2, and $u_{\infty} = 15$ m/sec (fourth variant) we have $Pr|_{\tilde{u}=0} = 0.387$, $Pr|_{\tilde{u}=\tilde{u}_{*}=0.97} = 0.781$, and $Pr|_{\tilde{u}=1} = 0.689$.

The largest variations across the height of a boundary layer occur in Lewis numbers and in Schmidt numbers, especially in Le₅. Thus, while Le₅ = 0.501 at $\tilde{u} = 0$, we have Le₅ = 1.844 and 2.168 (variant 2c) at $\tilde{u} = \tilde{u}_* = 0.97$ and $\tilde{u} = 1$ respectively.

At $u_{\infty} = 15$ m/sec we have $Le_5(0) = 1.561$ and $Le_5(1) = 2.628$ (Fig. 1f), also at $u_{\infty} = 100$ m/sec we have $Le_5(0) = 1.564$ and $Le_5(1) = 2.628$ (Fig. 2f), i.e., the effect of velocity on $Le_5(\tilde{u})$ and on the other Lewis numbers $Le_i(\tilde{u})$ (i = 1, 2, 3, 4, 6) is weak.

As the molecular weight \overline{m}_i increases, in most cases the Schmidt numbers Sc_i become larger and the Lewis numbers Le_i become smaller, because these numbers depend on the coefficients F_i , F defined in (7) and, consequently, also on the absolute values of \overline{m}_i . Since Sc_i and Le_i are functions not only of \overline{m}_i but also of Y_i , however, hence in certain variants this dependence of Sc_i and Le_i on \overline{m}_i ceases to be valid (with the temperature assumed constant) due to the predominant effect of the concentrations Y_i on Sc_i and Le_i (i = 1, 2, 3, 4) (Figs. 1 and 2).

The normalized diffusion currents j_1 vary most appreciably within the zone $\tilde{u} > \tilde{u}_*$ (Fig. 3). Where $\tilde{u} \leq \tilde{u}_*$, on the other hand, the \tilde{j}_i remain almost constant. Within the zone where $\tilde{u} = \tilde{u}_*$ the absolute values of the derivatives Y'_i and, therefore, also of the currents j_i have a discontinuity. For comparison, in Fig. 3a are shown the values of j_i corresponding to $Pr = Sc_i = 1$ (dashed straight lines). While within the zone where $u \leq u_{\star}$ the absolute values of j_1 are almost the same, whether the Prandtl number and the Schmidt numbers are constant (Pr = Sc_i = 1) or variable, within the zone where $\tilde{u}_* < \tilde{u} \leq 1$ the currents j_i differ considerably. A comparison between Fig. 3a and Fig. 3b (respective variants 1 and 6) shows that to a higher porosity P corresponds a higher \tilde{u}_* . Thus, $u_* = 0.77$ when P = 0.4 (Fig. 3a) and $u_* = 0.61$ when P = 0.2 (Fig. 3c), i.e., at higher porosities P and the same injection rate (B = 0.067) the total mass flow rate of injected gas per unit plate surface increases, resulting in a shift of the reaction front and thus in a higher u_* . As the stream velocity is increased from 15 to 50 m/sec, the parameters ω , ω' , H, T, Y_i, Le_i, and j_i do not change much. Thus, for $T_{\infty} = 1800^{\circ}$ K, B = 0.067, P = 0.4, and $u_{\infty} = 50$ m/sec we have $u_* = 0.77$, $T_p = 1132^{\circ}K$, $T_* = 3049^{\circ}K$, $H_p = -7.7 J/g$, $H_* = 2330 J/g$, $\omega_p = 0.247$, and $\omega_p = 0.0687$. For $u_{\infty} = 15$ m/sec and all other conditions unchanged, the values of these parameters, as shown in Figs. 1a-3a and in Table 1, differ from those for $u_{\infty} = 50$ m/sec by not more than 2%. A comparison between Fig. 3b and Fig. 3c indicates that within zone I the normalized currents ji remain almost the same, but they differ appreciably where $\tilde{u} > u_*$. Thus at $T_{\infty} = 1800^{\circ}$ K the ratio $\overline{j}_1^{II}(\tilde{u}_*)/\overline{j}_1^{II}(1)$ is equal to (-0.559)/(-0.3981), (0.247)/(0.507), (0.108)/(-0.062) and (0.243)/(0.094) for i = 1, 3, 4, and 6 respectively (with $\tilde{u}_* = 0.61$) (Fig. 1c). At $T_{\infty} = 305^{\circ}$ K and all other parameters unchanged, this ratio is respectively equal to (-0.655) (-0.811), (0.352)/(1.012), (0.124)/(-0.109), and (0.248)/(0.188) (with u_{*} = 0.66). Furthermore, a higher u* corresponds to a lower temperature T_m (Fig. 3b, c). Or for B = 0.067, P = 0.2, and $u_{\infty} = 50$ m/sec, for instance, we have $u_* = 0.63$ at $T_{\infty} = 1000^{\circ}$ K and $\tilde{u}_* = 0.617$ at $T_{\infty} = 1800^{\circ}$ K. It is to be noted that the variation in \tilde{u}_* with temperature T_{∞} (within the given range of T_{∞} temperatures) is negligible, however, by virtue of the relation $\tilde{u}_* \sim T_{\infty}^{-1}$, which follows from the last condition in (3) or from Eq. (10).

According to the data in Table 1, a higher injection velocity results in lower T and H at the plate surface, owing to the effect of transpiration cooling; T and H reach their maxima where $\tilde{u} = \tilde{u}_*$, because combustion of the gases according to reactions (a) and (c) occurs within this zone. At the outer edge of the boundary layer H(I) and T(I) are the same at the same stream velocity u_{∞} .

Fig. 4. Specific heat $c_p(J/kg \cdot ^{\circ}C)$, thermal conductivity $\lambda(W/m \cdot ^{\circ}C)$, dynamic viscosity $\mu(kg/m \cdot h)$, and density $\rho(kg/m)$ as functions of \tilde{u} ; boundary-layer parameters for variants 1_B-6_B are given in Table 1; solid line refers to $Pr \neq Sc_i \neq 1$, dashed line refers to $Pr = Sc_i = \tilde{\mu}\tilde{\rho} = 1$.

At velocities $u_{\infty} = 15$ and 100 m/sec (variants 5 and 6 in Table 1) the respective values of $H(\tilde{u})$ and $T(\tilde{u})$ are almost the same. Furthermore, a comparison between variants 1_B and 3_B or variants 2_B and 4_B indicates that the $H(\tilde{u})$ field and the $T(\tilde{u})$ field within the zone where $\tilde{u} = \tilde{u}_*$ both depend more on the heat generation than on the porosity. The values of $H(\tilde{u})$ and $T(\tilde{u})$ are higher when $Pr = Sc_i = 1$ than when $Pr \neq Sc_i \neq 1$ (except near the plate surface), inasmuch as in the former case all the chemical energy in the boundary layer is converted to heat. When $Pr \neq Sc_i \neq 1$, then such a conversion is only partial.

The trend of functions $\omega(\tilde{u})$ and $\omega'(\tilde{u})$ is analogous to that shown in [1], inasmuch as the velocity u has no discontinuity at $\tilde{u} = \tilde{u}_*$. In variants $1_B - 6_B$ the values of $\omega(0)$ are respectively 0.248, 0.108, 0.264, 0.1521, 0.216, 0.217, and the values of $\omega'(0)$ are respectively 0.069, 0.1541, 0.066, 0.1630, 0.0615, 0.0614. When $Pr = Sc_i = 1$ and $\tilde{\mu}\tilde{\rho} = 1$, we have for $\omega(0)$ (variants 1_B , 3_B , and 4_B) 0.282, 0.284, 0.215 and for $\omega'(0)$ 0.0694, 0.0666, 0.169. Here, too, $\omega(1) \rightarrow 0$ and $\omega'(1) \rightarrow \infty$, while both ω and ω' depend more on the injection rate B than on T_p and P within their given ranges. As the injection (hydrogen) rate is increased, the factor $\tilde{\mu}\tilde{\rho}$ in the momentum equation (1) decreases so that, therefore, ω decreases and ω' increases (one may compare $\omega(0)$ and $\omega'(0)$ in variants 1_B and 2_B or in variants 3_B and 4_B , for example). The porosity P affects ω and ω' as does the injection rate B, inasmuch as, at the same injection rate and with the other conditions unchanged, a higher porosity corresponds to a higher total flow rate of injected gas per unit area of the porous surface, which can be demonstrated on the basis of a comparison between $\omega(0)$ and $\omega'(0)$ respectively for variants 1_B and 3_B or variants 2_B and 4_B . A comparison between variants 1_B and 6_B , meanwhile, indicates that ω decreases and ω' increases with rising temperature T_{∞} .

When $\Pr = Sc_i = 1$ and $\tilde{\mu}\tilde{\rho} = 1$, then the ω parameters increase relative to the case of constant \Pr and Sc_i , which follows from the particular structure of the first equation in (1), where the condition $\Pr = Sc_i = \tilde{\mu}\tilde{\rho} = 1$ corresponds to a higher ω [1]. Maximum ω occurs within the boundary layer. This maximum ω corresponds to $\omega' = \omega'(\tilde{u})$.

The variation of the thermal flux q_p and that of the friction coefficient c_f along the porous plate x, as is shown in Table 2, corresponds to curves $q_p = q_p(x)$ and $c_f = c_f(x)$ in [1], with

$$Q = \frac{1}{l} \int_{0}^{l} q_{\mathbf{p}}(x) \, dx \, \text{kcal/m}^2 \cdot \text{sec},$$

and *l* denoting the length of the porous plate (l = 0.5 m). Here, too, $c_f \rightarrow \infty$ and $q_p \rightarrow \infty$ at x = 0. A comparison between variants 1_B and 2_B or variants 3_B and 4_B indicates that, as the injection rate B increases,

ũ	$\Pr \neq Sc_i \neq 1$						$\Pr = Sc_i = 1$			
	1 _B	² _B	3 _B	${}^{4}_{B}$	⁵ B	⁶ _B	¹ B	³ B	4 _B	
H-10										
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0		88 1325 2541 3389 4019 4577 5232 6238 8112 12381 17057	$\begin{array}{c} 27\\ 946\\ 2216\\ 3602\\ 5127\\ 6818\\ 8714\\ 11477\\ 14019\\ 16108\\ 17057\end{array}$	1 715 1773 2868 4097 5576 7414 10069 13889 20128 17057	373 578 828 1149 1554 2055 2670 3694 4545 4728 3143	373 576 822 1139 1538 2032 2639 3660 4518 4712 3154	146 2061 4268 6475 8673 10890 13097 15070 16107 17144 18181	$\begin{array}{c} 118\\ 1770\\ 3657\\ 5544\\ 7431\\ 9318\\ 11130\\ 12893\\ 14656\\ 16418\\ 18181 \end{array}$	171 2324 4819 7314 9809 12304 14799 17294 19789 19159 18181	
T·10										
$\begin{array}{c} 0 \\ 0,1 \\ 0,2 \\ 0,3 \\ 0,5 \\ 0,6 \\ 0,7 \\ 0,8 \\ 0,9 \\ 1,0 \\ \tilde{u}_{*} \\ H\cdot 10 \\ T_{*} \cdot 10 \end{array}$	$\begin{array}{c} 11430\\ 13075\\ 14998\\ 17039\\ 19229\\ 21612\\ 24252\\ 27242\\ 28643\\ 24713\\ 18000\\ 0,77\\ 14315\\ 29622 \end{array}$	4631 5751 6993 8314 9764 11415 13382 15874 19346 25119 18000 0,97 20433 33647	$\begin{array}{c} 13930\\ 15543\\ 17359\\ 19240\\ 21203\\ 23268\\ 25465\\ 24410\\ 22810\\ 20916\\ 18000\\ 0,61\\ 8916\\ 25693 \end{array}$	$\begin{array}{c} 8014\\ 9594\\ 11366\\ 13283\\ 15374\\ 17721\\ 20448\\ 23763\\ 28050\\ 34192\\ 18000\\ 0,90\\ 20128\\ 34192 \end{array}$	$\begin{bmatrix} 13863\\ 14970\\ 16107\\ 17298\\ 18557\\ 19900\\ 21352\\ 20149\\ 16739\\ 12611\\ 6000\\ 0,64\\ 2954\\ 21970\\ \end{bmatrix}$	13817 14918 16048 17233 18484 19818 21261 20062 16672 12568 6000 0,64 2918 21875	$\begin{array}{c} 9615\\ 12272\\ 15046\\ 17943\\ 20965\\ 24116\\ 27400\\ 29536\\ 26298\\ 22494\\ 18000\\ 0,68\\ 14863\\ 30125\\ \end{array}$	$\begin{array}{c} 11993\\ 14662\\ 17863\\ 20094\\ 22852\\ 25634\\ 25810\\ 24120\\ 22268\\ 20234\\ 18000\\ 0,54\\ 10072\\ 26753 \end{array}$	$\begin{array}{c} 6998\\ 9239\\ 11712\\ 14452\\ 17501\\ 20907\\ 24728\\ 29031\\ 33899\\ 28043\\ 18000\\ 0,81\\ 20038\\ 34421 \end{array}$	

TABLE 1^{\dagger}. Variation of Enthalpy H (J/g) and of Temperature T(°K) across the Height u of a Boundary Layer

† Subscripts 1_B-6_B denote the following variants under study: 1_B and 2_B B = 0.067 and 0.27 respectively, $T_{\infty} = 1.800$ °K, $u_{\infty} = 15$ m/sec, $P = 0.2,3_B$ and $4_B = 0.067$ and 0.27 respectively, $T_{\infty} = 1800$ °K, $u_{\infty} + 15$ m/sec $P = 0.2,5_B$ and $6_B u_{\infty} = 15$ and 100 m/sec respectively, $T_{\infty} = 600$ °K, B = 0.067, P = 0.2

TABLE 2. Variation of Thermal Flux $q_p(kcal/m^2 \cdot sec)$ and of the Friction Coefficient c_f along a Porous Plate (x, cm).

	qp ¹⁰²									
x			Pr ≠ S	$\Pr = Sc_i = 1$						
	1 _B	^{2}B	3 _B	⁴ _B	⁵ B	6 _B	1 _B	$B^{3}B$	4 _B	
$ \begin{array}{c} 1 \\ 3 \\ 6 \\ 10 \\ 15 \\ 20 \\ 30 \\ 50 \\ Q \cdot 10^2 \end{array} $	4188 2418 1710 1324 1081 936 765 592 1084	4111 2374 1678 1300 1062 919 751 581 1062	3350 1934 1368 1059 865 749 612 474 948	4371 2524 1784 1382 1129 977 798 618 1236	2210 1276 902 699 571 494 403 312 624	4010 2315 1637 1268 1035 897 732 567 1124	10732 6196 4381 3394 2771 2400 1959 1518 3036	8083 4667 3300 2556 2087 1807 1476 1143 2286	$10850 \\ 6264 \\ 4429 \\ 3431 \\ 2801 \\ 2426 \\ 1981 \\ 1534 \\ 3068$	
	cf:104									
' x			$\Pr \neq S$	$\Pr = \operatorname{Sc}_i = 1$						
	^{1}B	^{2}B	^{3}B	⁴ B	⁵ B	⁶ B	1 _B	3 _B	⁴ B	
1 3 6 10 15 20 30 50	$224 \\ 129 \\ 91 \\ 71 \\ 58 \\ 50 \\ 41 \\ 32$	97 56 40 31 25 22 18 14	238 137 97 75 61 53 43 34	137 79 56 43 35 31 25 19	79 46 32 25 21 18 14 11	44 25 18 14 11 10 8 6	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$256 \\ 148 \\ 105 \\ 81 \\ 66 \\ 57 \\ 47 \\ 36$	$ \begin{array}{c} 195\\113\\80\\62\\50\\44\\36\\28\end{array} $	

cf decreases and q_p changes very little. For the given range of B (a rather narrow range), q_p does not decrease with increasing B, as would be expected, but even tends to slightly increase. An analysis of Eq. (11) shows that, when B increases, the decrease in c_f is due mainly to the decrease in $\omega(0)$, while the

increase in q_p (despite the said variation in $\omega(0)$) is due to the combined effect of several parameters in Eq. (12), which include the temperature gradient T'_p. As the rate of hydrogen injection increases, the endothermal reaction (b) causes a drop in the surface temperature of the plate T_p and an only negligible change in the temperature T*; consequently, the derivative T'_p also increases with increasing B. The decrease in cf and the increase in q_p with increasing u_∞ (Table 2) can also be explained in terms of the relations (11)-(12), where c_f ~ u_∞^{-1/2} and q_p ~ u_∞^{1/2}. An increase in the porosity of the graphite plate causes a decrease in cf, by virtue of the decrease in $\omega(0)$ according to (11). Meanwhile, q_p varies little as a function of P. According to the data in Table 2, cf and q_p have higher values when Pr = Sc_i = 1 than when Pr \neq Sc_i \neq 1. This is explained by an increase of $\omega(0)$ in (11) ($\omega(0) = u_0^{-3/2}$) for cf and by an increase also of λ_p and T, in Table 1 and Fig. 4 for q_p (μ_p is almost the same whether Pr = Sc_i = $\tilde{\mu}\tilde{\rho}$ = 1 or Pr \neq Sc_i \neq 1). As T_∞ rises (variants 1_B and 5_B in Table 2), q_p and cf also increase, as a consequence of a higher ω_p and a lower Reynolds number Re_x according to relations (11) and (12); meanwhile, the ratio λ_p/μ_p remains almost constant.

The absolute values of the thermophysical parameters μ , ρ , λ , and \bar{c}_p in Fig. 4 vary appreciably across the height of a boundary layer. The values of these parameters are very different for Pr = Sc_i = 1 and for Pr \neq Sc_i \neq 1 respectively. Thus, for $\mu(0)$, $\mu(\tilde{\mu}_*)$, and $\mu(1)$ we have respectively 0.0624, 0.3602, and 0.2107 (variant 2). Or $\bar{c}_p(0) = 2623.1 \text{ J/kg} \cdot ^{\circ}\text{C}$, $\bar{c}_p(\tilde{u}_*) = 2019.9 \text{ J/kg} \cdot ^{\circ}\text{C}$, $\bar{c}_p(1) = 1246.2 \text{ J/kg} \cdot ^{\circ}\text{C}$, $\tilde{u}_* = 0.80$ when Pr = Sc_i = 1, for instance, but $\bar{c}_p(0) = 2135.3 \text{ J/kg} \cdot ^{\circ}\text{C}$, $\bar{c}_p(\tilde{u}_*) = 1935.2 \text{ J/kg} \cdot ^{\circ}\text{C}$, $\bar{c}_p(1) = 1246.2 \text$

Thus, the assumption that $Pr = Sc_i = 1$ leads in this case to large departures of calculated thermophysical as well as other heat and mass transfer parameters (c_f , q_p , ω , Y_i , $\overline{j_i}$, T, and H) from their respective exact values.

NOTATION

x	is the longitudinal coordinate at the plate surface;
У	is the normal coordinate;
u,v	are the components of the stream velocity along x, y respectively;
R	is the universal gas constant;
р	is the pressure;
c _p	is the specified heat at constant pressure;
λ^{F}	is the thermal conductivity;
ν	is the kinematic viscosity;
u ·	is the dynamic viscosity;
Di	is the diffusivity;
ρ	is the density (weight);
m	is the molecular weight;
$Y_i = \rho_i / \rho$	is the concentration (weight);
$\mathbf{c_p} = \sum_{i}^{N} \mathbf{c_{piy_i}}$	with N denoting the number of gas components;
$Pr = \mu \bar{c}_p / \lambda$	is the Prandtl number;
$Se_i = \mu / \rho D_i$	is the Schmidt number;
$Le_i = Pr/Se_i$	is the Lewis number;
QRi	is the heat of the chemical reaction per unit weight of component i;
$\mathbf{h}_{\mathbf{i}} = \int_{\mathbf{T}_0}^{\mathbf{T}} \mathbf{c}_{\mathbf{p}\mathbf{i}} d\mathbf{T} + \boldsymbol{\Delta}_{\mathbf{i}}(\mathbf{T}_0)$	is the enthalpy of component i;
$\Delta_i(T_0)$	is the formation enthalpy of component i at temperature T_0 .

Subscripts

∞ is the outer edge of a boundary layer;

p is the plate surface;

 Σ is the material of a porous plate with a filtrating coolant;

s is the solid matrix;

g is the gases inside the porous plate;

e is the porous plate at y - * °°;

+ is the boundary at $y \rightarrow 0$, and $y \rightarrow -\infty$;

- is the reaction zone;
- is the porous plate at $y \rightarrow 0$;

LITERATURE CITED

- 1.
- G. T. Sergeev, Inzh. Fiz. Zh., 23, No. 2, (1972).
 G. T. Sergeev, Izv. Akad. Nauk BSSR, Ser. Fiz. Energet. Nauk, No. 3, (1969). 2.
- G. A. Tirskii, Prikl. Matem. i Mekhan., 25, No. 2, (1961). 3.
- 4. G. T. Sergeev, Inzh. Fiz. Zh., 13, No. 1, (1961).